

Darts Lab Spacecraft Modeling and Simulation

Abhinandan Jain, PhD Autonomy and Control Section 818-354-3412

Abhi.Jain@jpl.nasa.gov http://dartslab.jpl.nasa.gov

> Jet Propulsion Lab Mail Code 198-235 4800 Oak Grove Dr. Pasadena, CA 91109

Mission Simulation Domains

Dshell Multimission Spacecraft Simulator JPL

DARTS - Flexible Multibody Dynamics Compute Engine

- * **DARTS** solves equations of motion for flexible multi-body system based on the dynamics properties of the bodies in the system and the forces applied to those bodies. Based on <u>Spatial Operator Algebra</u> state-of-the-art algorithms
- * DARTS includes interfaces for Dshell device models.

Layered Modeling Architecture

Darts Lab

This approach facilitates model reuse and extensibility to new mission domains.

Run-Time Simulation Model Definition

Simulation Dimensions

Darts Lab

These are "fault-lines" where inadequate performance can cause costly testbed fragmentation.

Goal: Design and architect high-performance simulation capability which addresses these needs; is open/extendable to future domains; is multi-mission/reusable; is configurable

Modular Run-Time Extension Architecture

Darts Lab

Additional capabilities & extensions are "loaded" in as needed at run-time.

Specific Mission Domain Examples JPL

Darts Lab

Rendezvous - Draper & in house G&C, Matlab/Simulink and standalone environments, planet & moon gravitational models

SIM - Large flex body dynamics, linear/nonlinear dynamics models, structural dynamics models, Matlab/Simulink environment

EDL - terrain models, LIDAR, s/c configuration changes, third party aero models, landing

Rovers - terrain interactions, wheel/soil interactions, collision detection, new integrators

Formation Flying - Multiple coupled spacecraft, distributed sensors, communication delays, large dynamic range for sim. Data, distributed sim.

DSENDS - Entry, Descent & Landing Simulator

Darts Lab

Simulation Demonstrates:

- •Multibody Dynamics
- •Pendulum Dynamics
- •CG Shifts
- •Thruster Effects
- •Beacon Data
- •Shield/Cover/Leg Deploy
- •LIDAR In-the-loop
- •Terrain Models
- •Landing Geometry
- •Fuel Depletion
- •Trajectory Propagation
- •Closed-Loop Control
- Landing Forces
- •Entry Aerodynamics
- •Parachute Dynamics

Red/Italic Coded Text Indicates Capability Being Exercised

DSENDS EDL Simulation

Mars Orbital Rendezvous Simulation

Dmex - Interface toMatlab/Simulink

Darts Lab

To support early workstation and later real-time simulation needs, we have developed **Dmex** interface for embedding **Dshell** models in **Matlab/Simulink**.

Stand-Alone Closed-Loop Flight Software Simulation

SIM Instrument Modeling

Darts Lab Classic gshell0 File Edit View Simulation Format Tools Science Baseline Estimate Error Get5tarVector Star Vectors Science Delay Estimate Error Matlab 5.3 Window Edit Options >> totc1('darts Q') Pathlength Feedforward -2.17959542763309306e-07 1.49467249775503599e-06 1.45 843165905555953e-06 -1.09254817169492113e-03 -7.44513 496706758149e-01 1.21848153631910609e-03 6.5760540356 0151967e-01 True Science Delay Science Delay Estimate Science Delay Estimate Error True Attitude B B H Q Q Q 1.6796 1.6798 -0.0607 1 6796 1.6796 Time offset: 0 Time offset: 0 Time offset - 0

13 July, 2001

ROAMS Planetary Rover Simulator

- Rover kinematics
- Terrain
- Sensors tilt, gyro, accelerometer
- Configuration Kinematics mobility algorithm
- Mobility dynamics
- Wheel models
- Wheel/terrain interaction
- Traction models
- Camera
- Hazard sensor
- Power panel, battery
- Instrument arm
- implemented
- under development

Planetary Rover Mobility Simulator

Mars Sample Return - Rendezvous Scenario

Darts Lab

Preliminary Rendezvous:

Search for the sample canister (OS)—which is ~15cm dia. and 3.6 kg mass—in a 600 km circular orbit (±100km 3s dispersion) and 45° inclination (±1° 3s dispersion) from the 250×1400 km orbit.

Intermediate Rendezvous:

Perform a series of maneuvers to alight its orbit node, inclination, and semi-major axis to match those of the canister's orbit.

Terminal Rendezvous:

Perform maneuvers from a coelliptic orbit of several km below and hundred km behind OS to 80 m position on +V-bar and stationkeep for at least 2 orbits prior to close and capture operations.

